3 research outputs found

    Flow Imaging Using MRI: Quantification and Analysis

    Get PDF
    A complex and challenging problem in flow study is to obtain quantitative flow information in opaque systems, for example, blood flow in biological systems and flow channels in chemical reactors. In this regard, MRI is superior to the conventional optical flow imaging or ultrasonic Doppler imaging. However, for high speed flows, complex flow behaviors and turbulences make it difficult to image and analyze the flows. In MR flow imaging, MR tagging technique has demonstrated its ability to simultaneously visualize motion in a sequence of images. Moreover, a quantification method, namely HARmonic Phase (HARP) analysis, can extract a dense velocity field from tagged MR image sequence with minimal manual intervention. In this work, we developed and validated two new MRI methods for quantification of very rapid flows. First, HARP was integrated with a fast MRI imaging method called SEA (Single Echo Acquisition) to image and analyze high velocity flows. Second, an improved HARP method was developed to deal with tag fading and data noise in the raw MRI data. Specifically, a regularization method that incorporates the law of flow dynamics in the HARP analysis was developed. Finally, the methods were validated using results from the computational fluid dynamics (CFD) and the conventional optimal flow imaging based on particle image velocimetry (PIV). The results demonstrated the improvement from the quantification using solely the conventional HARP method

    Real-Time Double-Layer Thin Film Thickness Measurements Using Modified Sagnac Interferometer with Polarization Phase Shifting Approach

    No full text
    This paper describes a modified Sagnac interferometer with a self-referenced polarization and phase-shifting technique for real-time thickness measurement of single- and double-layer transparent thin films. The proposed interferometric setup generated outstanding rotating linearly polarized light with a degree of polarization (DOP) of 99.40%. A beam splitter placed at the interferometer output separated the beam into two identical linearly polarized beams. One of the beams served as a reference, while the other served as a sensing arm. The output linear polarizer set at 45° relative to a reference plane was positioned anterior to the photodetectors to get rotating light intensities for phase shift measurement; hence, the intensities at various polarizations of 0°, 45°, and 90° were automatically acquired without any polarizing device adjustments. These intensities were then transformed into a phase retardation introduced by a sample, and the resulting phase shift was eventually converted into film thickness. The samples were properly prepared, with pure BK7 substrate being deposited by WO3-, Ta2O5-, and WO3/Ta2O5 films of known thicknesses. The thickness measurement obtained from the proposed system yielded reading errors of 1.3%, 0.2%, and 1.3/2.5% for WO3-, Ta2O5-, and WO3/Ta2O5 films, respectively. The mathematical theory was effectively demonstrated and empirically confirmed. The experimental results show that the proposed setup has a lot of potential for real-time, non-destructive thickness assessment of transparent thin films without the need to modify polarizing device orientations
    corecore